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Labarthe’s primitive L-patterns for the 3nj -symbols, where n = 3, 4, 5, 6, 7, are
reported. It is shown that, any L-patterns of the angular momentum recoupling
coefficients can be expressed in terms of linear combinations of the primitive L-patterns
and how the 3nj -symbols can be calculated from the expressions presented here.
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1. Introduction

When two dynamically independent systems, where their respective rota-
tion operators commute with each other, and each one is characterized by their
respective angular momentum eigenvalues and eigenstates, are coupled together,
the matrix elements of the unitary transformation that connect the coupled and
the two systems direct product representations, are the vector coupling or Cle-
bsch–Gordan coefficients. For three independent systems coupled together, the
coupling schemes and relevant transformations among them, give rise to the Ra-
cah coefficients or Wigner 6j -symbols. As the number of independent systems
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coupled together increase, the relevant recoupling coefficients will be 9j -, 12j -,
15j -, and 18j -symbols for 4, 5, 6, 7 systems, respectively. As an example, the
coupling of two spherical spin functions is a case of two-particle four-angular
momenta coupling scheme, whereas the operators are their respective commuting
orbital and spin angular momenta. Examples of higher order coupling schemes
may be found in the L–S and the j–j coupling schemes in the theory of poly-
electronic atoms.

The calculation of vector recoupling coefficients for more complex coupled
systems finds applications in branches of physics and chemistry as the many par-
ticle theory develops but at the same time grows increasingly in complexity. For
this reason the search for new theoretical approaches as well as alternative algo-
rithms for their evaluation, have long encouraged research in the subject and still
does.

Elegant formulae for the 3j -, and 6j -symbols have been obtained by Ra-
cah, Wigner and others and later by Labarthe [1–4]. For the 9j -symbol case, the
number of summations indexes increase rapidly and so far the simplest expres-
sion of the 9j -symbol with three summation variables has been obtained by Ju-
cys and co-worker [5].

Among the many contributions to the development of the theory, we can
cite, in chronological order, the work by van der Waerden [6], Wigner [1], Racah
[2], Sharp [3], Regge [7], Bargmann [8], Jucys and Bandzaitis [5], Varshelovich et
al [9], Biedenharn and Louck [10], and Labarthe [4] and more recently Roothaan
and Lai [11].

In this work, we have made use of the original ideas put forward by La-
barthe and used his method to write the primitive L-patterns of 3nj-symbols. We
also give the expressions for the 3nj -symbols in terms of the coefficients of the
linear combinations of the primitive L-patterns. The calculation of the 3j -, 6j -
and 9j -symbols are treated here in detail, while for the rest of the 3nj-symbols
it is shown how they can be obtained from the L-patterns, since these are all
explicitly listed here.

2. The algebra of primitive L-pattern

Let E denote the set of arrays L-pattern [n×m] formed of integers or half-
integers that satisfy the triangle conditions for the 3nj -symbols. Here n and m

are the numbers of rows and columns of the array, respectively, and m � n � 2.

For example, [2 × 3] represents the array L-pattern
[

a b c

d e f

]
, [3 × 3] rep-

resents the array L-pattern


 a b c

d e f

g h i


, and so on.
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We assume that the following algebraic operations are satisfied by all the
arrays of L-pattern. If x, y ∈ E and λ ∈ N , where N ≡ {0, 1, 2, . . . }, then

x + y ∈ E,

and

λ(x + y) = λx + λy ∈ E .

For example if

x =
[

x11 x12 x13

x21 x22 x23

]
, y =

[
y11 y12 y13

y21 y22 y23

]
(1)

then we have

x + y =
[

x11 + y11 x12 + y12 x13 + y13

x21 + y21 x22 + y22 x23 + y23

]
,

λ(x + y) =
[

λx11 + λy11 λx12 + λy12 λx13 + λy13

λx21 + λy21 λx22 + λy22 λx23 + λy23

]
. (2)

Let w be an L-pattern such that w ∈ E . If w can be written as a linear
combination of nonzero array L-patterns, such as w = λ1x+λ2y, where x, y ∈ E
and λ1, λ2 ∈ N , then w is said to be reducible.

A primitive L-pattern, eλ, other than e0, is defined as an L-pattern which
cannot be expressed in terms of the sum of any other L-patterns.

For an specific L-pattern [n × m], the corresponding set of primitive
L-patterns is completely defined and will be indicated by (e0, e1, . . . , e2n).

For a given value of n, there are in general total number of 2n+1 prim-
itive L-patterns. In the present work, the L-patterns considered correspond to
n = 2, 3, 4, 5, 6. The value n=2 refers to the well known 6j symbol, n=3 refers
to 9j symbol, etc.

We note here that the 3j symbol has some special property. The magnetic
quantum number m′s(m1 +m2 +m3 = 0) can be negative, but for the case of 6j ,
9j , 12j , 15j , and 18j this is not considered because magnetic quantum numbers
are not explicitly taken into account. Therefore, the total number of L-patterns
for 3j -symbols is less than for the 6j -symbols.

3. Decomposition of 3j-symbols in terms of primitive L-pattern

The 3j symbols can be decomposed in seven (e0 is included) primitive
L-pattern, all in E , which are depicted as follows:
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e0 =
[

0 0 0
0 0 0

]
, e1 =

[
s s 0
s −s 0

]
, e2 =

[
0 s s

0 s −s

]
, e3 =

[
s 0 s

−s 0 s

]
,

e4 =
[

s 0 s

s 0 −s

]
, e5 =

[
s s 0

−s s 0

]
, e6 =

[
0 s s

0 −s s

]
, (3)

where s = 1/2 here and thereafter.
The values for the 3j -symbols of the corresponding primitive L-pattern are

1 for e0,
√

1
2 from e1 to e3 and −1/

√
2 from e4 to e6.

Any x ∈ E can be expressed in terms of primitive L-pattern as

x =
[

j1 j2 j3

m1 m2 m3

]
=

6∑
k=1

αkek, where αk ∈ N . (4)

Since the primitive L-patterns fulfill the relation

e1 + e2 + e3 = e4 + e5 + e6 =
[

1 1 1
0 0 0

]
, (5)

it follows that the expansion of equation (4) is not unique. The general expres-
sion for the 3j -symbols in terms of αk is

(
j1 j2 j3

m1 m2 m3

)
= 1

N3

∑
α1,...,α6

(−1)α4+α5+α6

(∑6
i=1 αi + 1

)
!∏6

i=1 αi !
, where 0 � αj ∈ N . (6)

Here, the sum runs over all the possible decompositions of x ∈ E , in primitive
L-patterns. In addition m1+m2+m3 =0 and N3 =

√
Tj1j2j3T

−
j1j2j3,m1m2m3

T +
j1j2j3,m1m2m3

,
where [11]

Tj1j2j3 = (j1 + j2 + j3 + 1)!
(−j1 + j2 + j3)!(j1 − j2 + j3)!(j1 + j2 − j3)!

,

T −
j1j2j3,m1m2m3

= (j1 + j2 + j3 + 1)!
(j1 − m1)!(j2 − m2)!(j3 − m3)!

,

T +
j1j2j3,m1m2m3

= (j1 + j2 + j3 + 1)!
(j1 + m1)!(j2 + m2)!(j3 + m3)!

. (7)

Substituting the expression for the primitive L-patterns of equation (3) into the
decomposition given in equation (4) and then equating the individual L-pattern
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elements on the left and on the right hand sides, we obtain a set of six lin-
ear equations on the αk’s. After solving these equations, the following αk’s are
obtained.

α1 = j1 + j2 − j3 − α5,

α2 = j2 + m2 − α5,

α3 = j1 − m1 − α5, (8)

α4 = j3 − j2 + m1 + α5,

α6 = j3 − j1 − m2 + α5.

We see that the six-index sum in equation (6) is reduced to a single sum and
the summation over α5 must be restricted by the following conditions:

max(j1 − j3 + m2, j2 − j3 − m1) � α5 � min(j1 + j2 − j3, j2 + m2, j1 − m1). (9)

(
j1 j2 j3

m1 m2 m3

)
= 1

N3

∑
α1,...,α6

(−1)α4+α5+α6

(∑6
i=1 αi + 1

)
!∏6

i=1 αi !
, 0�αj ∈ N . (10)

It is easy to show that the above 3j -symbols formula is exactly equal to Racah’s
expression [2](

j1 j2 j3

m1 m2 m3

)
= 1

N3

∑
α5

(−1)j1−j2−m3+α5

α5!(j1 + j2 − j3 − α5)!(j2 + m2 − α5)!

× 1
(j1 − m1 − α5)!(j3 − j2 + m1 + α5)!(j3 − j1 − m2 + α5)

(11)

4. Decomposition of 6j-symbols in terms of primitive L-pattern

For the case of 6j -symbols (in E), it is found that there are eight primitive
L-pattern which are depicted as follows:

e0 =
[

0 0 0
0 0 0

]
, e1 =

[
s s 0
s s 0

]
, e2 =

[
0 s s

0 s s

]
, e3 =

[
s 0 s

s 0 s

]
, (12)

e4 =
[

s s 0
0 0 s

]
, e5 =

[
0 s s

s 0 0

]
, e6 =

[
s 0 s

0 s 0

]
, e7 =

[
0 0 0
s s s

]
. (13)

The 6j values of corresponding primitive L-pattern are now: 1 for e0, 1/2 from
e1 to e3, and −1/

√
2 from e4 to e7.

As before, any x ∈ E can be expressed in terms of primitive L-pattern as

x =
[

a b c

d e f

]
=

7∑
k=1

αkek with αk ∈ N . (14)
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and also, since the primitive L-pattern satisfy now the relation

e1 + e2 + e3 = e4 + e5 + e6 + e7 =
[

1 1 1
1 1 1

]
, (15)

the expansion of equation (13) is also not unique. The general expression [4,11]
for the 6j symbols in terms of αk is

{
a b c

d e f

}
= 1

N6

∑
α1,...,α7

(−1)|α|(|α| + 1)!∏7
j=1 αj !

with 0 � αj ∈ N . (16)

Where the sum runs over all the possible decompositions, in primitive L-pattern,
of x ∈ E . Here

N6 = √
TabcTaef Tbdf Tcde, (17)

Tabc has been defined in equation (7), and

|α| =
7∑

k=1

αk. (18)

After solving equation (13) by using equation (12), then it is possible to express
all α′

ks in terms of only α7. These expression are as follows:

α1 = −c + d + e − α7,

α2 = −a + e + f − α7,

α3 = −b + d + f − α7,

α4 = a + b − d − e + α7,

α5 = b + c − e − f + α7,

α6 = a + c − d − f + α7. (19)

Thus it is shown that equation (15), which has seven-index sums has been
reduced to single sum. The summation over α7 must be restricted by the follow-
ing condition:

0 � α7 � min(−c + d + e, −a + e + f, −b + d + f ). (20)

Again, it is easy to show that the above 6j symbol is exactly equal to Racah’s
expression [3]

{
a b c

d e f

}
= 1

N6

∑
n

(−1)n(n + 1)!
(a + b + d + e − n)!(b + c + e + f − n)!(n − b − d − f )!

× 1
(a + c + d + f − n)!(n − c − d − e)!(n − a − e − f )!(n − a − b − c)!

. (21)
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5. Decomposition of 9j-symbol in terms of primitive L-pattern

There are sixteen primitive L-pattern of 9j -symbols in E , which we list as
follows:

e0 =

 0 0 0

0 0 0
0 0 0


 ,

e1 =

 s s 0

s s 0
0 0 0


 , e2 =


 s 0 s

s 0 s

0 0 0


 , e3 =


 0 s s

0 s s

0 0 0


 ,

e4 =

 s s 0

0 0 0
s s 0


 , e5 =


 s 0 s

0 0 0
s 0 s


 , e6 =


 0 s s

0 0 0
0 s s


 ,

e7 =

 0 0 0

s s 0
s s 0


 , e8 =


 0 0 0

s 0 s

s 0 s


 , e9 =


 0 0 0

0 s s

0 s s


 ,

e10 =

 0 s s

s 0 s

s s 0


 , e11 =


 s 0 s

s s 0
0 s s


 , e12 =


 s s 0

0 s s

s 0 s


 ,

e13 =

 s s 0

s 0 s

0 s s


 , e14 =


 0 s s

s s 0
s 0 s


 , e15 =


 s 0 s

0 s s

s s 0


 , (22)

where the 9j values of the corresponding primitive L-pattern are: 1 for e0, (1/2)

from e1 to e9, −(1/4) from e10 to e12 and 1/4 from e13 to e15, respectively.
As before, any given array x ∈ E of 9j -symbol can be expanded in terms

of primitive L-pattern as follows:

x =

 a b c

d e f

g h i


 =

15∑
k=1

αkek, (23)

where the α′
ks are non-negative integers.

Since the primitive L-patterns satisfy many relations similar to the following

9∑
i=1

ei =
15∑

i=10

ei =

 2 2 2

2 2 2
2 2 2


 ,

e1 + e5 + e9 + e10 = e3 + e4 + e8 + e11

= · · · = e13 + e14 + e15 =

 1 1 1

1 1 1
1 1 1


 ,
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the decomposition is again not unique. The general expression of the 9j -symbol
in terms of the α′

ks is now




a b c

d e f

g h i


 = 1

N9

∑
α1,α2,...,α15

(−1)α10+α11+α12(n + 1)!∏15
k=1 αk!

. (24)

Following the same procedure described above, the 15-index summation can be
reduced to 6 independent sums, from α10 to α15, and where αk ∈N ≡{0, 1, 2, . . . }.

The relations among the α′
ks are now the following:

α1 = 1
2
(a + b − c + d + e − f − g − h + i + α10 − α11 − α12 − α13 − α14 + α15),

α2 = 1
2
(a − b + c + d − e + f − g + h − i − α10 − α11 + α12 − α13 + α14 − α15),

α3 = 1
2
(−a + b + c − d + e + f + g − h − i − α10 + α11 − α12 + α13 − α14 − α15),

α4 = 1
2
(a + b − c − d − e + f + g + h − i − α10 + α11 − α12 − α13 + α14 − α15),

α5 = 1
2
(a − b + c − d + e − f + g − h + i + α10 − α11 − α12 + α13 − α14 − α15),

α6 = 1
2
(−a + b + c + d − e − f − g + h + i − α10 − α11 + α12 − α13 − α14 + α15),

α7 = 1
2
(−a − b + c + d + e − f + g + h − i − α10 − α11 + α12 + α13 − α14 − α15),

α8 = 1
2
(−a + b − c + d − e + f + g − h + i − α10 + α11 − α12 − α13 − α14 + α15),

α9 = 1
2
(a − b − c − d + e + f − g + h + i + α10 − α11 − α12 − α13 + α14 − α15)

(25)

and where

n =
15∑
i=1

αi = 1
2
(a + b + c + d + e + f + g + h + i

−α10 − α11 − α12 − α13 − α14 − α15). (26)
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In equation (23) the sum over αk must be restricted by the following conditions:

0 � α13 + α12 � min(−c + f + i, a + b − c),

0 � α10 + α14 � min(−a + b + c, −a + d + g),

0 � α10 + α15 � min(c + f − i, g + h − i),

0 � α13 + α11 � min(a + d − g, −g + h + i),

0 � α15 + α12 � min(a − d + g, −d + e + f ),

0 � α10 + α13 � min(d − e + f, b − e + h),

0 � α11 + α14 � min(c − f + i, d + e − f ),

0 � α12 + α14 � min(g − h + i, b + e − h),

0 � α11 + α15 � min(a − b + c, −b + e + h). (27)

It is seen that because in equation (23) the sum runs over six indices, numeri-
cal calculations using this expression are less efficient compared to 9j -symbols
computed as a sum of products of 6j symbols. That is




a b c

d e f

g h i


 = 1√

TabcTdef TghiTadgTbehTcf i

×
∑

u,v,w,x,y,z

(−1)u+v+w(y + 1)!
u!v!w!x!z!(a − c + e − h + u − w + z)!(w − u − v − x − z + c + d − e + h − g)!

× 1
(y + v + x − a − d − h − i)!(b − e + h − u − x − z)!(y + u + x − b − d − f − h)!

× 1
(y + x + w − a − b − f − i)!(b + c + d + h + i − y − u − v − x − z)!

× 1
(f + g − c − h − w + v + z)!(h + i − g − v − x − z)!(z − y − w + a + e + f + g)!

. (28)

A MAPLE program, based on equation (24), has been written by one of us
(STL). With the help of this program, the value of any given 9j -symbol, and all
possible decompositions, can be calculated.
When one of the argument of 9j , for example, i = 0, equation (24) reduces to




a b c

d e f

g h 0


 = δ(g, h)δ(c, f )√

TabcTdef TadgTbehTcf 0Tgh0

∑
s

(−1)s(b + c + d + h + 1 − s)!
(a − c + e − h + s)!s!(d + h − a − s)!

× 1
(c + d − e − s)!(c + d − a − s)!(b − e + h − s)!(a − b − d + e + s)!

. (29)
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6. Decomposition of 12j-symbol in terms of primitive L-pattern

In this case we find that there are thirty two (e0 is included) primitive
L-pattern of first kind 12j -symbol [5,9] which are

e1 =

 0 0 s 0

0 s s 0
0 0 s 0


 , e2 =


 s 0 0 0

s 0 0 s

s 0 0 0


 , e3 =


 0 0 0 s

0 0 s s

0 0 0 s


 , e4 =


 0 s 0 0

s s 0 0
0 s 0 0


 ,

e5 =

 0 0 s s

0 s 0 s

0 0 s s


 , e6 =


 s 0 0 s

s 0 s 0
s 0 0 s


 , e7 =


 0 s s 0

s 0 s 0
0 s s 0


 , e8 =


 s s 0 0

0 s 0 s

s s 0 0


 ,

e9 =

 0 s 0 s

s s s s

0 s 0 s


 , e10 =


 s 0 s 0

s s s s

s 0 s 0


 , e11 =


 s s s 0

0 0 s s

s s s 0


 , e12 =


 0 s s s

s 0 0 s

0 s s s


 ,

e13 =

 s 0 s s

s s 0 0
s 0 s s


 , e14 =


 s s 0 s

0 s s 0
s s 0 s


 , e15 =


 s s s s

0 0 0 0
s s s s


 , e16 =


 s s s 0

0 0 s 0
0 0 0 s


 ,

e17 =

 s s s s

0 0 0 s

0 0 0 0


 , e18 =


 0 0 0 s

0 0 s 0
s s s 0


 , e19 =


 0 0 0 0

0 0 0 s

s s s s


 , e20 =


 s s 0 0

0 s 0 0
0 0 s s


 ,

e21 =

 s 0 0 0

s 0 0 0
0 s s s


 , e22 =


 0 0 s s

0 s 0 0
s s 0 0


 , e23 =


 0 s s s

s 0 0 0
s 0 0 0


 , e24 =


 s 0 0 s

s 0 s s

0 s s 0


 ,

e25 =

 0 s 0 0

s s 0 s

s 0 s s


 , e26 =


 0 s 0 s

s s s 0
s 0 s 0


 , e27 =


 s 0 s 0

s s s 0
0 s 0 s


 , e28 =


 s 0 s s

s s 0 s

0 s 0 0


 ,

e29 =

 0 0 s 0

0 s s s

s s 0 s


 , e30 =


 0 s s 0

s 0 s s

s 0 0 s


 , e31 =


 s s 0 s

0 s s s

0 0 s 0


 , (30)

where the values of the 12j -symbols corresponding to the above primitive
L-pattern are: (1/2) from e1 to e4, (1/4) from e5 to e10, (1/8) from e11 to e14,
−(1/8) from e15, (

√
2/4) from e16 to e23, and −(

√
2/8) from e24 to e31, respec-

tively.
As before, any given array x ∈ E of 12j -symbol can be expanded in terms

of primitive L-pattern in the following way:

x =

 a1 a2 a3 a4

b12 b23 b34 b41

c1 c2 c3 c4


 =

31∑
�=1

α�e�, (31)
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where the α�’s are non-negative integers. Since the primitive L-patterns satisfy
relations of the type:

15∑
i=1

ei =
31∑

i=16

ei =

 4 4 4 4

4 4 4 4
4 4 4 4


 , (32)

the decomposition is also not unique.
The general expression of the 12j -symbol in terms of α� is




a1 a2 a3 a4

b12 b23 b34 b41

c1 c2 c3 c4


 = 1

N12

∑
{α}

(−1)
∑31

i=1 αi (|α| + 1)!∏31
p=1 αp!

. (33)

In equation (32) |α| and {α}signify

|α| =
31∑

�=1

α� and {α} ≡ {α1, . . . , α31},

respectively, and

N12 = √
Ta1a2b12Ta2a3b23 . . . Tc4b41a1 .

7. Decomposition of 15j-symbol in terms of primitive L-pattern

Below, we list the sixty four (e0 is included) primitive L-pattern arising of
first kind 15j -symbol [5]

e0 =

 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0


 , e1 =


 0 0 s 0 0

0 s s 0 0
0 0 s 0 0


 , e2 =


 0 s 0 0 0

s s 0 0 0
0 s 0 0 0


 ,

e3 =

 0 0 0 0 s

0 0 0 s s

0 0 0 0 s


 , e4 =


 0 0 0 s 0

0 0 s s 0
0 0 0 s 0


 , e5 =


 s 0 0 0 0

s 0 0 0 s

s 0 0 0 0


 ,

e6 =

 0 0 0 0 0

0 0 0 0 s

s s s s s


 , e7 =


 0 0 0 0 s

0 0 0 s 0
s s s s 0


 , e8 =


 0 0 0 s s

0 0 s 0 0
s s s 0 0


 ,
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e9 =

 0 0 0 s s

0 0 s 0 s

0 0 0 s s


 , e10 =


 0 0 s s 0

0 s 0 s 0
0 0 s s 0


 , e11 =


 0 0 s s s

0 s 0 0 0
s s 0 0 0


 ,

e12 =

 s 0 0 0 0

s 0 0 0 0
0 s s s s


 , e13 =


 0 s s s s

s 0 0 0 0
s 0 0 0 0


 , e14 =


 0 s s 0 0

s 0 s 0 0
0 s s 0 0


 ,

e15 =

 s 0 0 0 s

s 0 0 s 0
s 0 0 0 s


 , e16 =


 s s 0 0 0

0 s 0 0 0
0 0 s s s


 , e17 =


 s s 0 0 0

0 s 0 0 s

s s 0 0 0


 ,

e18 =

 s s s 0 0

0 0 s 0 0
0 0 0 s s


 , e19 =


 s s s s 0

0 0 0 s 0
0 0 0 0 s


 , e20 =


 s s s s s

0 0 0 0 s

0 0 0 0 0


 ,

e21 =

 0 s 0 s 0

s s s s 0
0 s 0 s 0


 , e22 =


 0 0 s 0 s

0 s s s s

0 0 s 0 s


 , e23 =


 0 s 0 0 s

s s 0 s s

0 s 0 0 s


 ,

e24 =

 s 0 s 0 0

s s s 0 s

s 0 s 0 0


 , e25 =


 s 0 0 s 0

s 0 s s s

s 0 0 s 0


 , e26 =


 s s 0 0 s

0 s 0 s 0
s s 0 0 s


 ,

e27 =

 s 0 0 s s

s 0 s 0 0
s 0 0 s s


 , e28 =


 s s s 0 0

0 0 s 0 s

s s s 0 0


 , e29 =


 0 s s s 0

s 0 0 s 0
0 s s s 0


 ,

e30 =

 0 0 s s s

0 s 0 0 s

0 0 s s s


 , e31 =


 0 0 s 0 0

0 s s 0 s

s s 0 s s


 , e32 =


 0 s 0 0 s

s s 0 s 0
s 0 s s 0


 ,

e33 =

 0 0 s 0 s

0 s s s 0
s s 0 s 0


 , e34 =


 0 0 s s 0

0 s 0 s s

s s 0 0 s


 , e35 =


 0 s 0 s s

s s s 0 0
s 0 s 0 0


 ,

e36 =

 0 s s 0 0

s 0 s 0 s

s 0 0 s s


 , e37 =


 0 0 0 s 0

0 0 s s s

s s s 0 s


 , e38 =


 0 s 0 0 0

s s 0 0 s

s 0 s s s


 ,

e39 =

 0 s s 0 s

s 0 s s 0
s 0 0 s 0


 , e40 =


 0 s s s 0

s 0 0 s s

s 0 0 0 s


 , e41 =


 s 0 0 0 s

s 0 0 s s

0 s s s 0


 ,

e42 =

 s 0 0 s 0

s 0 s s 0
0 s s 0 s


 , e43 =


 s 0 0 s s

s 0 s 0 s

0 s s 0 0


 , e44 =


 s s 0 0 s

0 s 0 s s

0 0 s s 0


 ,
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e45 =

 s 0 s 0 0

s s s 0 0
0 s 0 s s


 , e46 =


 s s 0 s 0

0 s s s 0
0 0 s 0 s


 , e47 =


 s s 0 s s

0 s s 0 s

0 0 s 0 0


 ,

e48 =

 s 0 s s 0

s s 0 s 0
0 s 0 0 s


 , e49 =


 s 0 s s s

s s 0 0 s

0 s 0 0 0


 , e50 =


 s s s 0 s

0 0 s s s

0 0 0 s 0


 ,

e51 =

 s 0 s 0 s

s s s s 0
s 0 s 0 s


 , e52 =


 s 0 s s 0

s s 0 s s

s 0 s s 0


 , e53 =


 s s 0 s 0

0 s s s s

s s 0 s 0


 ,

e54 =

 0 s s 0 s

s 0 s s s

0 s s 0 s


 , e55 =


 0 s 0 s s

s s s 0 s

0 s 0 s s


 , e56 =


 0 s 0 s 0

s s s s s

s 0 s 0 s


 ,

e57 =

 0 s s s s

s 0 0 0 s

0 s s s s


 , e58 =


 s s 0 s s

0 s s 0 0
s s 0 s s


 , e59 =


 s 0 s 0 s

s s s s s

0 s 0 s 0


 ,

e60 =

 s 0 s s s

s s 0 0 0
s 0 s s s


 , e61 =


 s s s 0 s

0 0 s s 0
s s s 0 s


 , e62 =


 s s s s 0

0 0 0 s s

s s s s 0


 ,

e63 =

 s s s s s

0 0 0 0 0
s s s s s


 , (34)

where the values of the 15j -symbols corresponding to the above primitive
L-pattern are: 1 for e0, (1/2) from e1 to e5, (1/4) from e6 to e25, (1/8) from e26

to e30, −(1/8) from e31 to e50, 1/8 from e51 to e55, (1/16) from e56 to e62, and
−(1/16) for e63, respectively.

The expansion, in terms of primitive L-pattern, of any given x ∈ E of
15j -symbol is as follows:

x =

 a1 a2 a3 a4 a5

b12 b23 b34 b45 b51

c1 c2 c3 c4 c5


 =

63∑
k=1

αkek, (35)

where, as before, αk’s are non-negative integers.
The decomposition is not unique since the primitive L-patterns again satisfy

many relations of the type

5∑
i=1

ei +
50∑

i=21

ei =
20∑
i=6

ei +
63∑

i=51

ei =

 8 8 8 8 8

8 8 8 8 8
8 8 8 8 8


 . (36)

The general expression of the 15j -symbol in terms of αk is
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


a1 a2 a3 a4 a5

b12 b23 b34 b45 b51

c1 c2 c3 c4 c5


 = 1

N15

∑
{α}

(−1)
∑50

i=31 αi (−1)α63(n + 1)!∏63
k=1 αk!

(37)

in which the following definitions apply:

n =
63∑
i=1

αi, {α} ≡ {α1, . . . , α63}

and

N15 = √
Ta1a2b12Ta2a3b23 . . . Tc5b51a1 .

8. Decomposition of 18j-symbol in terms of primitive L-pattern

There are 128 (e0 is included) primitive L-pattern of first kind 18j -symbol
[7] Nevertheless, for the sake of simplicity, we will only show those primi-
tive L-patterns that give rise to different 18j -symbols values.1 These primitive
L-patterns are the following:

e0 =

 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


 , e1 =


 0 0 0 0 0 s

0 0 0 0 s s

0 0 0 0 0 s


 , e7 =


 0 0 0 0 s s

0 0 0 s 0 s

0 0 0 0 s s


 ,

e22 =

 0 0 0 s s s

0 0 s 0 0 s

0 0 0 s s s


 , e42 =


 0 s s s s 0

s 0 0 0 s 0
0 s s s s 0


 , e57 =


 0 s s s s s

s 0 0 0 0 s

0 s s s s s


 ,

e63 =

 s s s s s s

0 0 0 0 0 0
s s s s s s


 , e64 =


 0 0 0 0 0 0

0 0 0 0 0 s

s s s s s s


 , e76 =


 0 0 0 s 0 0

0 0 s s 0 s

s s s 0 s s


 ,

e116 =

 0 0 s 0 s 0

0 s s s s s

s s 0 s 0 s


 . (38)

The values of the corresponding 18j -symbols are: 1 for e0, (1/2) from e1 to e6,
(1/4) from e7 to e21, (1/8) from e22 to e41, (1/16) from e42 to e56, (1/32) from e57

to e62, and −(1/32) for e63,(
√

2/8) from e64 to e75, −(
√

2/16) from e76 to e115,
(
√

2/32) from e116 to e127, respectively.
Any given array x(in E) of 18j -symbol can be expanded in terms of prim-

itive L-pattern as follows:

1The full set of 128 L-patterns may be obtained from the authors upon request.
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x =

 a1 a2 a3 a4 a5 a6

b12 b23 b34 b45 b56 b61

c1 c2 c3 c4 c5 c6


 =

127∑
k=1

αkek, (39)

where αk’s are non-negative integers.
Due to the many relations of the type

63∑
i=1

ei =
127∑
i=64

ei =

 16 16 16 16 16 16

16 16 16 16 16 16
16 16 16 16 16 16


 (40)

fulfilled by the primitive L-pattern the decomposition is not unique. The general
expression of the 18j -symbol in terms of αk will be




a1 a2 a3 a4 a5 a6

b12 b23 b34 b45 b56 b61

c1 c2 c3 c4 c5 c6


 = 1

N18

∑
{α}

(−1)
∑127

i=1 αi (|α| + 1)!∏127
�=1 α�!

, (41)

with the definitions:

|α| =
127∑
i=1

αi, {α} ≡ {α1, . . . , α127}

and

N18 = √
Ta1a2b12Ta2a3b23 . . . Tc6b61a1 .

9. Concluding remarks

In this article we have intended to present all the basic L-patterns from
which, in principle, the 3nj -symbols can be theoretically calculated since the
L-patterns are primitive to all of them. In this manner, we wanted to explore
an alternative view to simplify the problem of computing the higher order angu-
lar momentum recoupling coefficients with a different simple technique. Further
exploratory work is being carried out, aimed to reduce the number of summa-
tion indexes in the expressions here presented.
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