The primitive L-pattern of angular momentum recoupling coefficients

Shan-Tao Lai ${ }{ }^{\ddagger}$
Vitreous State Laboratory, Department of Physics
Ying-Nan Chiu*
Center for Molecular Dynamics and Energy Transfer, Department of Chemistry, The Catholic University of America, Washington, D. C. 20064 USA
Ricardo Letelier
Chemistry Department, Faculty of Physical Sciences and Mathematics University of Chile, Casilla 2777, Santiago, Chile
E-mail: jletelie@ing.uchile.cl

Received 2 June 2004; revised 5 July 2004

Labarthe's primitive L-patterns for the $3 n j$-symbols, where $n=3,4,5,6,7$, are reported. It is shown that, any L-patterns of the angular momentum recoupling coefficients can be expressed in terms of linear combinations of the primitive L-patterns and how the $3 n j$-symbols can be calculated from the expressions presented here.

KEY WORDS: angular momentum, recoupling coefficients
AMS subject classification: 81Q

1. Introduction

When two dynamically independent systems, where their respective rotation operators commute with each other, and each one is characterized by their respective angular momentum eigenvalues and eigenstates, are coupled together, the matrix elements of the unitary transformation that connect the coupled and the two systems direct product representations, are the vector coupling or Cle-bsch-Gordan coefficients. For three independent systems coupled together, the coupling schemes and relevant transformations among them, give rise to the Racah coefficients or Wigner $6 j$-symbols. As the number of independent systems

[^0]coupled together increase, the relevant recoupling coefficients will be $9 j-, 12 j-$, $15 j$-, and $18 j$-symbols for $4,5,6,7$ systems, respectively. As an example, the coupling of two spherical spin functions is a case of two-particle four-angular momenta coupling scheme, whereas the operators are their respective commuting orbital and spin angular momenta. Examples of higher order coupling schemes may be found in the $\mathrm{L}-\mathrm{S}$ and the $j-j$ coupling schemes in the theory of polyelectronic atoms.

The calculation of vector recoupling coefficients for more complex coupled systems finds applications in branches of physics and chemistry as the many particle theory develops but at the same time grows increasingly in complexity. For this reason the search for new theoretical approaches as well as alternative algorithms for their evaluation, have long encouraged research in the subject and still does.

Elegant formulae for the $3 j$-, and $6 j$-symbols have been obtained by Racah, Wigner and others and later by Labarthe [1-4]. For the $9 j$-symbol case, the number of summations indexes increase rapidly and so far the simplest expression of the $9 j$-symbol with three summation variables has been obtained by Jucys and co-worker [5].

Among the many contributions to the development of the theory, we can cite, in chronological order, the work by van der Waerden [6], Wigner [1], Racah [2], Sharp [3], Regge [7], Bargmann [8], Jucys and Bandzaitis [5], Varshelovich et al [9], Biedenharn and Louck [10], and Labarthe [4] and more recently Roothaan and Lai [11].

In this work, we have made use of the original ideas put forward by Labarthe and used his method to write the primitive L-patterns of $3 n j$-symbols. We also give the expressions for the $3 n j$-symbols in terms of the coefficients of the linear combinations of the primitive L-patterns. The calculation of the $3 j-, 6 j$ and $9 j$-symbols are treated here in detail, while for the rest of the 3 nj -symbols it is shown how they can be obtained from the L-patterns, since these are all explicitly listed here.

2. The algebra of primitive L-pattern

Let \mathcal{E} denote the set of arrays L-pattern $[n \times m]$ formed of integers or halfintegers that satisfy the triangle conditions for the $3 n j$-symbols. Here n and m are the numbers of rows and columns of the array, respectively, and $m \geqslant n \geqslant 2$.

For example, $[2 \times 3]$ represents the array L-pattern $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$, $[3 \times 3]$ represents the array L-pattern $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, and so on.

We assume that the following algebraic operations are satisfied by all the arrays of L-pattern. If $x, y \in \mathcal{E}$ and $\lambda \in \mathcal{N}$, where $\mathcal{N} \equiv\{0,1,2, \ldots\}$, then

$$
x+y \in \mathcal{E}
$$

and

$$
\lambda(x+y)=\lambda x+\lambda y \in \mathcal{E}
$$

For example if

$$
x=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \tag{1}\\
x_{21} & x_{22} & x_{23}
\end{array}\right], \quad y=\left[\begin{array}{lll}
y_{11} & y_{12} & y_{13} \\
y_{21} & y_{22} & y_{23}
\end{array}\right]
$$

then we have

$$
\begin{align*}
x+y & =\left[\begin{array}{lll}
x_{11}+y_{11} & x_{12}+y_{12} & x_{13}+y_{13} \\
x_{21}+y_{21} & x_{22}+y_{22} & x_{23}+y_{23}
\end{array}\right], \\
\lambda(x+y) & =\left[\begin{array}{lll}
\lambda x_{11}+\lambda y_{11} & \lambda x_{12}+\lambda y_{12} & \lambda x_{13}+\lambda y_{13} \\
\lambda x_{21}+\lambda y_{21} & \lambda x_{22}+\lambda y_{22} & \lambda x_{23}+\lambda y_{23}
\end{array}\right] . \tag{2}
\end{align*}
$$

Let w be an L-pattern such that $w \in \mathcal{E}$. If w can be written as a linear combination of nonzero array L-patterns, such as $w=\lambda_{1} x+\lambda_{2} y$, where $x, y \in \mathcal{E}$ and $\lambda_{1}, \lambda_{2} \in \mathcal{N}$, then w is said to be reducible.

A primitive L-pattern, e_{λ}, other than e_{0}, is defined as an L-pattern which cannot be expressed in terms of the sum of any other L-patterns.

For an specific L-pattern $[n \times m]$, the corresponding set of primitive L-patterns is completely defined and will be indicated by $\left(e_{0}, e_{1}, \ldots, e_{2^{n}}\right)$.

For a given value of n, there are in general total number of 2^{n+1} primitive L-patterns. In the present work, the L-patterns considered correspond to $n=2,3,4,5,6$. The value $n=2$ refers to the well known $6 j$ symbol, $n=3$ refers to $9 j$ symbol, etc.

We note here that the $3 j$ symbol has some special property. The magnetic quantum number $m^{\prime} s\left(m_{1}+m_{2}+m_{3}=0\right)$ can be negative, but for the case of $6 j$, $9 j, 12 j, 15 j$, and $18 j$ this is not considered because magnetic quantum numbers are not explicitly taken into account. Therefore, the total number of L-patterns for $3 j$-symbols is less than for the $6 j$-symbols.

3. Decomposition of $\mathbf{3 j}$-symbols in terms of primitive L-pattern

The $3 j$ symbols can be decomposed in seven (e_{0} is included) primitive L-pattern, all in \mathcal{E}, which are depicted as follows:
$e_{0}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad e_{1}=\left[\begin{array}{ccc}s & s & 0 \\ s & -s & 0\end{array}\right], \quad e_{2}=\left[\begin{array}{ccc}0 & s & s \\ 0 & s & -s\end{array}\right], \quad e_{3}=\left[\begin{array}{ccc}s & 0 & s \\ -s & 0 & s\end{array}\right]$,
$e_{4}=\left[\begin{array}{ccc}s & 0 & s \\ s & 0 & -s\end{array}\right], \quad e_{5}=\left[\begin{array}{ccc}s & s & 0 \\ -s & s & 0\end{array}\right], \quad e_{6}=\left[\begin{array}{ccc}0 & s & s \\ 0 & -s & s\end{array}\right]$,
where $s=1 / 2$ here and thereafter.
The values for the $3 j$-symbols of the corresponding primitive L-pattern are 1 for $e_{0}, \sqrt{\frac{1}{2}}$ from e_{1} to e_{3} and $-1 / \sqrt{2}$ from e_{4} to e_{6}.

Any $x \in \mathcal{E}$ can be expressed in terms of primitive L-pattern as

$$
x=\left[\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{4}\\
m_{1} & m_{2} & m_{3}
\end{array}\right]=\sum_{k=1}^{6} \alpha_{k} e_{k}, \quad \text { where } \alpha_{k} \in \mathcal{N}
$$

Since the primitive L-patterns fulfill the relation

$$
e_{1}+e_{2}+e_{3}=e_{4}+e_{5}+e_{6}=\left[\begin{array}{lll}
1 & 1 & 1 \tag{5}\\
0 & 0 & 0
\end{array}\right]
$$

it follows that the expansion of equation (4) is not unique. The general expression for the $3 j$-symbols in terms of α_{k} is

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{6}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=\frac{1}{N_{3}} \sum_{\alpha_{1}, \ldots, \alpha_{6}} \frac{(-1)^{\alpha_{4}+\alpha_{5}+\alpha_{6}}\left(\sum_{i=1}^{6} \alpha_{i}+1\right)!}{\prod_{i=1}^{6} \alpha_{i}!}, \quad \text { where } \quad 0 \leqslant \alpha_{j} \in \mathcal{N}
$$

Here, the sum runs over all the possible decompositions of $x \in \mathcal{E}$, in primitive L-patterns. In addition $m_{1}+m_{2}+m_{3}=0$ and $N_{3}=\sqrt{T_{j_{1} j_{2} j_{3}} T_{j_{1} j_{2} j_{3}, m_{1} m_{2} m_{3}}^{-} T_{j_{1} j_{2} j_{3}, m_{1} m_{2} m_{3}}^{+}}$, where [11]

$$
\begin{align*}
T_{j_{1} j_{2} j_{3}} & =\frac{\left(j_{1}+j_{2}+j_{3}+1\right)!}{\left(-j_{1}+j_{2}+j_{3}\right)!\left(j_{1}-j_{2}+j_{3}\right)!\left(j_{1}+j_{2}-j_{3}\right)!}, \\
T_{j_{1} j_{2} j_{3}, m_{1} m_{2} m_{3}}^{-} & =\frac{\left(j_{1}+j_{2}+j_{3}+1\right)!}{\left(j_{1}-m_{1}\right)!\left(j_{2}-m_{2}\right)!\left(j_{3}-m_{3}\right)!}, \\
T_{j_{1} j_{2} j_{3}, m_{1} m_{2} m_{3}}^{+} & =\frac{\left(j_{1}+j_{2}+j_{3}+1\right)!}{\left(j_{1}+m_{1}\right)!\left(j_{2}+m_{2}\right)!\left(j_{3}+m_{3}\right)!} . \tag{7}
\end{align*}
$$

Substituting the expression for the primitive L-patterns of equation (3) into the decomposition given in equation (4) and then equating the individual L-pattern
elements on the left and on the right hand sides, we obtain a set of six linear equations on the α_{k} 's. After solving these equations, the following α_{k} 's are obtained.

$$
\begin{align*}
& \alpha_{1}=j_{1}+j_{2}-j_{3}-\alpha_{5}, \\
& \alpha_{2}=j_{2}+m_{2}-\alpha_{5}, \\
& \alpha_{3}=j_{1}-m_{1}-\alpha_{5}, \tag{8}\\
& \alpha_{4}=j_{3}-j_{2}+m_{1}+\alpha_{5}, \\
& \alpha_{6}=j_{3}-j_{1}-m_{2}+\alpha_{5} .
\end{align*}
$$

We see that the six-index sum in equation (6) is reduced to a single sum and the summation over α_{5} must be restricted by the following conditions:

$$
\begin{align*}
& \max \left(j_{1}-j_{3}+m_{2}, j_{2}-j_{3}-m_{1}\right) \leqslant \alpha_{5} \leqslant \min \left(j_{1}+j_{2}-j_{3}, j_{2}+m_{2}, j_{1}-m_{1}\right) \tag{9}\\
& \qquad\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=\frac{1}{N_{3}} \sum_{\alpha_{1}, \ldots, \alpha_{6}} \frac{(-1)^{\alpha_{4}+\alpha_{5}+\alpha_{6}}\left(\sum_{i=1}^{6} \alpha_{i}+1\right)!}{\prod_{i=1}^{6} \alpha_{i}!}, \quad 0 \leqslant \alpha_{j} \in \mathcal{N} \tag{10}
\end{align*}
$$

It is easy to show that the above $3 j$-symbols formula is exactly equal to Racah's expression [2]

$$
\begin{align*}
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)= & \frac{1}{N_{3}} \sum_{\alpha_{5}} \frac{(-1)^{j_{1}-j_{2}-m_{3}+\alpha_{5}}}{\alpha_{5}!\left(j_{1}+j_{2}-j_{3}-\alpha_{5}\right)!\left(j_{2}+m_{2}-\alpha_{5}\right)!} \\
& \times \frac{1}{\left(j_{1}-m_{1}-\alpha_{5}\right)!\left(j_{3}-j_{2}+m_{1}+\alpha_{5}\right)!\left(j_{3}-j_{1}-m_{2}+\alpha_{5}\right)} \tag{11}
\end{align*}
$$

4. Decomposition of $\mathbf{6} \boldsymbol{j}$-symbols in terms of primitive \boldsymbol{L}-pattern

For the case of $6 j$-symbols (in \mathcal{E}), it is found that there are eight primitive L-pattern which are depicted as follows:

$$
\left.\begin{array}{lll}
e_{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & e_{1}=\left[\begin{array}{lll}
s & s & 0 \\
s & s & 0
\end{array}\right], & e_{2}=\left[\begin{array}{lll}
0 & s & s \\
0 & s & s
\end{array}\right],
\end{array} e_{3}=\left[\begin{array}{lll}
s & 0 & s \\
s & 0 & s
\end{array}\right], ~ 子 \begin{array}{lll}
s & s & 0 \tag{13}\\
0 & 0 & s
\end{array}\right], \quad e_{5}=\left[\begin{array}{lll}
0 & s & s \\
s & 0 & 0
\end{array}\right], \quad e_{6}=\left[\begin{array}{lll}
s & 0 & s \\
0 & s & 0
\end{array}\right], \quad e_{7}=\left[\begin{array}{lll}
0 & 0 & 0 \\
s & s & s
\end{array}\right] . ~ \$
$$

The $6 j$ values of corresponding primitive L-pattern are now: 1 for $e_{0}, 1 / 2$ from e_{1} to e_{3}, and $-1 / \sqrt{2}$ from e_{4} to e_{7}.

As before, any $x \in \mathcal{E}$ can be expressed in terms of primitive L-pattern as

$$
x=\left[\begin{array}{lll}
a & b & c \tag{14}\\
d & e & f
\end{array}\right]=\sum_{k=1}^{7} \alpha_{k} e_{k} \quad \text { with } \alpha_{k} \in \mathcal{N} .
$$

and also, since the primitive L-pattern satisfy now the relation

$$
e_{1}+e_{2}+e_{3}=e_{4}+e_{5}+e_{6}+e_{7}=\left[\begin{array}{lll}
1 & 1 & 1 \tag{15}\\
1 & 1 & 1
\end{array}\right]
$$

the expansion of equation (13) is also not unique. The general expression $[4,11]$ for the $6 j$ symbols in terms of α_{k} is

$$
\left\{\begin{array}{lll}
a & b & c \tag{16}\\
d & e & f
\end{array}\right\}=\frac{1}{N_{6}} \sum_{\alpha_{1}, \ldots, \alpha_{7}} \frac{(-1)^{|\alpha|}(|\alpha|+1)!}{\prod_{j=1}^{7} \alpha_{j}!} \quad \text { with } \quad 0 \leqslant \alpha_{j} \in \mathcal{N} .
$$

Where the sum runs over all the possible decompositions, in primitive L-pattern, of $x \in \mathcal{E}$. Here

$$
\begin{equation*}
N_{6}=\sqrt{T_{a b c} T_{a e f} T_{b d f} T_{c d e}}, \tag{17}
\end{equation*}
$$

$T_{a b c}$ has been defined in equation (7), and

$$
\begin{equation*}
|\alpha|=\sum_{k=1}^{7} \alpha_{k} . \tag{18}
\end{equation*}
$$

After solving equation (13) by using equation (12), then it is possible to express all $\alpha_{k}^{\prime} s$ in terms of only α_{7}. These expression are as follows:

$$
\begin{align*}
\alpha_{1} & =-c+d+e-\alpha_{7}, \\
\alpha_{2} & =-a+e+f-\alpha_{7}, \\
\alpha_{3} & =-b+d+f-\alpha_{7}, \\
\alpha_{4} & =a+b-d-e+\alpha_{7}, \\
\alpha_{5} & =b+c-e-f+\alpha_{7}, \\
\alpha_{6} & =a+c-d-f+\alpha_{7} . \tag{19}
\end{align*}
$$

Thus it is shown that equation (15), which has seven-index sums has been reduced to single sum. The summation over α_{7} must be restricted by the following condition:

$$
\begin{equation*}
0 \leqslant \alpha_{7} \leqslant \min (-c+d+e,-a+e+f,-b+d+f) . \tag{20}
\end{equation*}
$$

Again, it is easy to show that the above $6 j$ symbol is exactly equal to Racah's expression [3]

$$
\begin{align*}
\left\{\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right\}= & \frac{1}{N_{6}} \sum_{n} \frac{(-1)^{n}(n+1)!}{(a+b+d+e-n)!(b+c+e+f-n)!(n-b-d-f)!} \\
& \times \frac{1}{(a+c+d+f-n)!(n-c-d-e)!(n-a-e-f)!(n-a-b-c)!} . \tag{21}
\end{align*}
$$

5. Decomposition of $9 \boldsymbol{j}$-symbol in terms of primitive L-pattern

There are sixteen primitive L-pattern of $9 j$-symbols in \mathcal{E}, which we list as follows:

$$
\begin{align*}
& e_{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
& e_{1}=\left[\begin{array}{lll}
s & s & 0 \\
s & s & 0 \\
0 & 0 & 0
\end{array}\right] \text {, } \\
& e_{2}=\left[\begin{array}{lll}
s & 0 & s \\
s & 0 & s \\
0 & 0 & 0
\end{array}\right] \\
& e_{4}=\left[\begin{array}{lll}
s & s & 0 \\
0 & 0 & 0 \\
s & s & 0
\end{array}\right], \quad e_{5}=\left[\begin{array}{ccc}
s & 0 & s \\
0 & 0 & 0 \\
s & 0 & s
\end{array}\right], \\
& e_{3}=\left[\begin{array}{lll}
0 & s & s \\
0 & s & s \\
0 & 0 & 0
\end{array}\right], \\
& e_{6}=\left[\begin{array}{lll}
0 & s & s \\
0 & 0 & 0 \\
0 & s & s
\end{array}\right], \\
& e_{7}=\left[\begin{array}{lll}
0 & 0 & 0 \\
s & s & 0 \\
s & s & 0
\end{array}\right], \quad e_{8}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
s & 0 & s \\
s & 0 & s
\end{array}\right], \\
& e_{9}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & s & s \\
0 & s & s
\end{array}\right], \\
& e_{10}=\left[\begin{array}{ccc}
0 & s & s \\
s & 0 & s \\
s & s & 0
\end{array}\right], \quad e_{11}=\left[\begin{array}{ccc}
s & 0 & s \\
s & s & 0 \\
0 & s & s
\end{array}\right], \quad e_{12}=\left[\begin{array}{ccc}
s & s & 0 \\
0 & s & s \\
s & 0 & s
\end{array}\right], \\
& e_{13}=\left[\begin{array}{ccc}
s & s & 0 \\
s & 0 & s \\
0 & s & s
\end{array}\right], \quad e_{14}=\left[\begin{array}{ccc}
0 & s & s \\
s & s & 0 \\
s & 0 & s
\end{array}\right], \quad e_{15}=\left[\begin{array}{ccc}
s & 0 & s \\
0 & s & s \\
s & s & 0
\end{array}\right], \tag{22}
\end{align*}
$$

where the $9 j$ values of the corresponding primitive L-pattern are: 1 for $e_{0},(1 / 2)$ from e_{1} to $e_{9},-(1 / 4)$ from e_{10} to e_{12} and $1 / 4$ from e_{13} to e_{15}, respectively.

As before, any given array $x \in \mathcal{E}$ of $9 j$-symbol can be expanded in terms of primitive L-pattern as follows:

$$
x=\left[\begin{array}{lll}
a & b & c \tag{23}\\
d & e & f \\
g & h & i
\end{array}\right]=\sum_{k=1}^{15} \alpha_{k} e_{k},
$$

where the $\alpha_{k}^{\prime} s$ are non-negative integers.
Since the primitive L-patterns satisfy many relations similar to the following

$$
\begin{aligned}
\sum_{i=1}^{9} e_{i} & =\sum_{i=10}^{15} e_{i}=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right], \\
e_{1}+e_{5}+e_{9}+e_{10} & =e_{3}+e_{4}+e_{8}+e_{11} \\
& =\cdots=e_{13}+e_{14}+e_{15}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right],
\end{aligned}
$$

the decomposition is again not unique. The general expression of the $9 j$-symbol in terms of the $\alpha_{k}^{\prime} s$ is now

$$
\left\{\begin{array}{lll}
a & b & c \tag{24}\\
d & e & f \\
g & h & i
\end{array}\right\}=\frac{1}{N_{9}} \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{15}} \frac{(-1)^{\alpha_{10}+\alpha_{11}+\alpha_{12}}(n+1)!}{\prod_{k=1}^{15} \alpha_{k}!}
$$

Following the same procedure described above, the 15 -index summation can be reduced to 6 independent sums, from α_{10} to α_{15}, and where $\alpha_{k} \in \mathcal{N} \equiv\{0,1,2, \ldots\}$.

The relations among the $\alpha_{k}^{\prime} s$ are now the following:
$\alpha_{1}=\frac{1}{2}\left(a+b-c+d+e-f-g-h+i+\alpha_{10}-\alpha_{11}-\alpha_{12}-\alpha_{13}-\alpha_{14}+\alpha_{15}\right)$,
$\alpha_{2}=\frac{1}{2}\left(a-b+c+d-e+f-g+h-i-\alpha_{10}-\alpha_{11}+\alpha_{12}-\alpha_{13}+\alpha_{14}-\alpha_{15}\right)$,
$\alpha_{3}=\frac{1}{2}\left(-a+b+c-d+e+f+g-h-i-\alpha_{10}+\alpha_{11}-\alpha_{12}+\alpha_{13}-\alpha_{14}-\alpha_{15}\right)$,
$\alpha_{4}=\frac{1}{2}\left(a+b-c-d-e+f+g+h-i-\alpha_{10}+\alpha_{11}-\alpha_{12}-\alpha_{13}+\alpha_{14}-\alpha_{15}\right)$,
$\alpha_{5}=\frac{1}{2}\left(a-b+c-d+e-f+g-h+i+\alpha_{10}-\alpha_{11}-\alpha_{12}+\alpha_{13}-\alpha_{14}-\alpha_{15}\right)$,
$\alpha_{6}=\frac{1}{2}\left(-a+b+c+d-e-f-g+h+i-\alpha_{10}-\alpha_{11}+\alpha_{12}-\alpha_{13}-\alpha_{14}+\alpha_{15}\right)$,
$\alpha_{7}=\frac{1}{2}\left(-a-b+c+d+e-f+g+h-i-\alpha_{10}-\alpha_{11}+\alpha_{12}+\alpha_{13}-\alpha_{14}-\alpha_{15}\right)$,
$\alpha_{8}=\frac{1}{2}\left(-a+b-c+d-e+f+g-h+i-\alpha_{10}+\alpha_{11}-\alpha_{12}-\alpha_{13}-\alpha_{14}+\alpha_{15}\right)$,
$\alpha_{9}=\frac{1}{2}\left(a-b-c-d+e+f-g+h+i+\alpha_{10}-\alpha_{11}-\alpha_{12}-\alpha_{13}+\alpha_{14}-\alpha_{15}\right)$
and where

$$
\begin{align*}
n=\sum_{i=1}^{15} \alpha_{i}= & \frac{1}{2}(a+b+c+d+e+f+g+h+i \\
& \left.\quad \alpha_{10}-\alpha_{11}-\alpha_{12}-\alpha_{13}-\alpha_{14}-\alpha_{15}\right) \tag{26}
\end{align*}
$$

In equation (23) the sum over α_{k} must be restricted by the following conditions:

$$
\begin{align*}
& 0 \leqslant \alpha_{13}+\alpha_{12} \leqslant \min (-c+f+i, a+b-c), \\
& 0 \leqslant \alpha_{10}+\alpha_{14} \leqslant \min (-a+b+c,-a+d+g), \\
& 0 \leqslant \alpha_{10}+\alpha_{15} \leqslant \min (c+f-i, g+h-i), \\
& 0 \leqslant \alpha_{13}+\alpha_{11} \leqslant \min (a+d-g,-g+h+i), \\
& 0 \leqslant \alpha_{15}+\alpha_{12} \leqslant \min (a-d+g,-d+e+f), \\
& 0 \leqslant \alpha_{10}+\alpha_{13} \leqslant \min (d-e+f, b-e+h), \\
& 0 \leqslant \alpha_{11}+\alpha_{14} \leqslant \min (c-f+i, d+e-f), \\
& 0 \leqslant \alpha_{12}+\alpha_{14} \leqslant \min (g-h+i, b+e-h), \\
& 0 \leqslant \alpha_{11}+\alpha_{15} \leqslant \min (a-b+c,-b+e+h) \tag{27}
\end{align*}
$$

It is seen that because in equation (23) the sum runs over six indices, numerical calculations using this expression are less efficient compared to $9 j$-symbols computed as a sum of products of $6 j$ symbols. That is

$$
\begin{align*}
& \begin{array}{lll}
\left.\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right\}=\frac{1}{\sqrt{T_{a b c} T_{d e f} T_{g h i} T_{\text {adg }} T_{\text {beh }} T_{c f i}}} \\
\times \sum_{u, v, w, x, y, z} \frac{(-1)^{u+v+w}(y+1)!}{u!v!w!x!z!(a-c+e-h+u-w+z)!(w-u-v-x-z+c+d-e+h-g)!} \\
\times \frac{1}{(y+v+x-a-d-h-i)!(b-e+h-u-x-z)!(y+u+x-b-d-f-h)!} \\
\times \frac{1}{(y+x+w-a-b-f-i)!(b+c+d+h+i-y-u-v-x-z)!}
\end{array} \\
& \times \frac{1}{(f+g-c-h-w+v+z)!(h+i-g-v-x-z)!(z-y-w+a+e+f+g)!}
\end{align*}
$$

A MAPLE program, based on equation (24), has been written by one of us (STL). With the help of this program, the value of any given $9 j$-symbol, and all possible decompositions, can be calculated.
When one of the argument of $9 j$, for example, $i=0$, equation (24) reduces to

$$
\begin{align*}
\left\{\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 0
\end{array}\right\}= & \frac{\delta(g, h) \delta(c, f)}{\sqrt{T_{a b c} T_{\text {def }} T_{a d g} T_{\text {beh }} T_{c f 0} T_{g h 0}}} \sum_{s} \frac{(-1)^{s}(b+c+d+h+1-s)!}{(a-c+e-h+s)!s!(d+h-a-s)!} \\
& \times \frac{1}{(c+d-e-s)!(c+d-a-s)!(b-e+h-s)!(a-b-d+e+s)!} . \tag{29}
\end{align*}
$$

6. Decomposition of $\mathbf{1 2 j}$-symbol in terms of primitive \boldsymbol{L}-pattern

In this case we find that there are thirty two (e_{0} is included) primitive L-pattern of first kind $12 j$-symbol $[5,9]$ which are

$$
\begin{align*}
& e_{1}=\left[\begin{array}{cccc}
0 & 0 & s & 0 \\
0 & s & s & 0 \\
0 & 0 & s & 0
\end{array}\right], e_{2}=\left[\begin{array}{cccc}
s & 0 & 0 & 0 \\
s & 0 & 0 & s \\
s & 0 & 0 & 0
\end{array}\right], e_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & s \\
0 & 0 & s & s \\
0 & 0 & 0 & s
\end{array}\right], e_{4}=\left[\begin{array}{cccc}
0 & s & 0 & 0 \\
s & s & 0 & 0 \\
0 & s & 0 & 0
\end{array}\right], \\
& e_{5}=\left[\begin{array}{cccc}
0 & 0 & s & s \\
0 & s & 0 & s \\
0 & 0 & s & s
\end{array}\right], e_{6}=\left[\begin{array}{cccc}
s & 0 & 0 & s \\
s & 0 & s & 0 \\
s & 0 & 0 & s
\end{array}\right], e_{7}=\left[\begin{array}{cccc}
0 & s & s & 0 \\
s & 0 & s & 0 \\
0 & s & s & 0
\end{array}\right], e_{8}=\left[\begin{array}{cccc}
s & s & 0 & 0 \\
0 & s & 0 & s \\
s & s & 0 & 0
\end{array}\right], \\
& e_{9}=\left[\begin{array}{cccc}
0 & s & 0 & s \\
s & s & s & s \\
0 & s & 0 & s
\end{array}\right], e_{10}=\left[\begin{array}{cccc}
s & 0 & s & 0 \\
s & s & s & s \\
s & 0 & s & 0
\end{array}\right], e_{11}=\left[\begin{array}{cccc}
s & s & s & 0 \\
0 & 0 & s & s \\
s & s & s & 0
\end{array}\right], e_{12}=\left[\begin{array}{cccc}
0 & s & s & s \\
s & 0 & 0 & s \\
0 & s & s & s
\end{array}\right], \\
& e_{13}=\left[\begin{array}{llll}
s & 0 & s & s \\
s & s & 0 & 0 \\
s & 0 & s & s
\end{array}\right], e_{14}=\left[\begin{array}{cccc}
s & s & 0 & s \\
0 & s & s & 0 \\
s & s & 0 & s
\end{array}\right], e_{15}=\left[\begin{array}{cccc}
s & s & s & s \\
0 & 0 & 0 & 0 \\
s & s & s & s
\end{array}\right], e_{16}=\left[\begin{array}{cccc}
s & s & s & 0 \\
0 & 0 & s & 0 \\
0 & 0 & 0 & s
\end{array}\right], \\
& e_{17}=\left[\begin{array}{cccc}
s & s & s & s \\
0 & 0 & 0 & s \\
0 & 0 & 0 & 0
\end{array}\right], e_{18}=\left[\begin{array}{cccc}
0 & 0 & 0 & s \\
0 & 0 & s & 0 \\
s & s & s & 0
\end{array}\right], e_{19}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & s \\
s & s & s & s
\end{array}\right], e_{20}=\left[\begin{array}{cccc}
s & s & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & s & s
\end{array}\right], \\
& e_{21}=\left[\begin{array}{cccc}
s & 0 & 0 & 0 \\
s & 0 & 0 & 0 \\
0 & s & s & s
\end{array}\right], e_{22}=\left[\begin{array}{llll}
0 & 0 & s & s \\
0 & s & 0 & 0 \\
s & s & 0 & 0
\end{array}\right], e_{23}=\left[\begin{array}{cccc}
0 & s & s & s \\
s & 0 & 0 & 0 \\
s & 0 & 0 & 0
\end{array}\right], e_{24}=\left[\begin{array}{cccc}
s & 0 & 0 & s \\
s & 0 & s & s \\
0 & s & s & 0
\end{array}\right], \\
& e_{25}=\left[\begin{array}{llll}
0 & s & 0 & 0 \\
s & s & 0 & s \\
s & 0 & s & s
\end{array}\right], e_{26}=\left[\begin{array}{cccc}
0 & s & 0 & s \\
s & s & s & 0 \\
s & 0 & s & 0
\end{array}\right], e_{27}=\left[\begin{array}{cccc}
s & 0 & s & 0 \\
s & s & s & 0 \\
0 & s & 0 & s
\end{array}\right], e_{28}=\left[\begin{array}{cccc}
s & 0 & s & s \\
s & s & 0 & s \\
0 & s & 0 & 0
\end{array}\right], \\
& e_{29}=\left[\begin{array}{cccc}
0 & 0 & s & 0 \\
0 & s & s & s \\
s & s & 0 & s
\end{array}\right], e_{30}=\left[\begin{array}{cccc}
0 & s & s & 0 \\
s & 0 & s & s \\
s & 0 & 0 & s
\end{array}\right], e_{31}=\left[\begin{array}{cccc}
s & s & 0 & s \\
0 & s & s & s \\
0 & 0 & s & 0
\end{array}\right], \tag{30}
\end{align*}
$$

where the values of the $12 j$-symbols corresponding to the above primitive L-pattern are: $(1 / 2)$ from e_{1} to $e_{4},(1 / 4)$ from e_{5} to e_{10}, $(1 / 8)$ from e_{11} to e_{14}, $-(1 / 8)$ from $e_{15},(\sqrt{2} / 4)$ from e_{16} to e_{23}, and $-(\sqrt{2} / 8)$ from e_{24} to e_{31}, respectively.

As before, any given array $x \in \mathcal{E}$ of $12 j$-symbol can be expanded in terms of primitive L-pattern in the following way:

$$
x=\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \tag{31}\\
b_{12} & b_{23} & b_{34} & b_{41} \\
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right]=\sum_{\ell=1}^{31} \alpha_{\ell} e_{\ell}
$$

where the α_{ℓ} 's are non-negative integers. Since the primitive L-patterns satisfy relations of the type:

$$
\sum_{i=1}^{15} e_{i}=\sum_{i=16}^{31} e_{i}=\left[\begin{array}{llll}
4 & 4 & 4 & 4 \tag{32}\\
4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4
\end{array}\right]
$$

the decomposition is also not unique.
The general expression of the $12 j$-symbol in terms of α_{ℓ} is

$$
\left\{\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \tag{33}\\
b_{12} & b_{23} & b_{34} & b_{41} \\
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right\}=\frac{1}{N_{12}} \sum_{\{\alpha\}} \frac{(-1)^{\sum_{i=1}^{31} \alpha_{i}}(|\alpha|+1)!}{\prod_{p=1}^{31} \alpha_{p}!}
$$

In equation (32) $|\alpha|$ and $\{\alpha\}$ signify

$$
|\alpha|=\sum_{\ell=1}^{31} \alpha_{\ell} \quad \text { and } \quad\{\alpha\} \equiv\left\{\alpha_{1}, \ldots, \alpha_{31}\right\}
$$

respectively, and

$$
N_{12}=\sqrt{T_{a_{1} a_{2} b_{12}} T_{a_{2} a_{3} b_{23}} \ldots T_{c_{4} b_{41} a_{1}}} .
$$

7. Decomposition of $\mathbf{1 5 j}$-symbol in terms of primitive L-pattern

Below, we list the sixty four (e_{0} is included) primitive L-pattern arising of first kind $15 j$-symbol [5]

$$
\begin{aligned}
& e_{0}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad e_{1}=\left[\begin{array}{ccccc}
0 & 0 & s & 0 & 0 \\
0 & s & s & 0 & 0 \\
0 & 0 & s & 0 & 0
\end{array}\right], \quad e_{2}=\left[\begin{array}{ccccc}
0 & s & 0 & 0 & 0 \\
s & s & 0 & 0 & 0 \\
0 & s & 0 & 0 & 0
\end{array}\right], \\
& e_{3}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & s \\
0 & 0 & 0 & s & s \\
0 & 0 & 0 & 0 & s
\end{array}\right], \quad e_{4}=\left[\begin{array}{ccccc}
0 & 0 & 0 & s & 0 \\
0 & 0 & s & s & 0 \\
0 & 0 & 0 & s & 0
\end{array}\right], \quad e_{5}=\left[\begin{array}{ccccc}
s & 0 & 0 & 0 & 0 \\
s & 0 & 0 & 0 & s \\
s & 0 & 0 & 0 & 0
\end{array}\right], \\
& e_{6}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & s \\
s & s & s & s & s
\end{array}\right], \quad e_{7}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & s \\
0 & 0 & 0 & s & 0 \\
s & s & s & s & 0
\end{array}\right], \quad e_{8}=\left[\begin{array}{ccccc}
0 & 0 & 0 & s & s \\
0 & 0 & s & 0 & 0 \\
s & s & s & 0 & 0
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& e_{9}=\left[\begin{array}{ccccc}
0 & 0 & 0 & s & s \\
0 & 0 & s & 0 & s \\
0 & 0 & 0 & s & s
\end{array}\right], \quad e_{10}=\left[\begin{array}{ccccc}
0 & 0 & s & s & 0 \\
0 & s & 0 & s & 0 \\
0 & 0 & s & s & 0
\end{array}\right], \quad e_{11}=\left[\begin{array}{ccccc}
0 & 0 & s & s & s \\
0 & s & 0 & 0 & 0 \\
s & s & 0 & 0 & 0
\end{array}\right], \\
& e_{12}=\left[\begin{array}{ccccc}
s & 0 & 0 & 0 & 0 \\
s & 0 & 0 & 0 & 0 \\
0 & s & s & s & s
\end{array}\right], \quad e_{13}=\left[\begin{array}{ccccc}
0 & s & s & s & s \\
s & 0 & 0 & 0 & 0 \\
s & 0 & 0 & 0 & 0
\end{array}\right], \quad e_{14}=\left[\begin{array}{ccccc}
0 & s & s & 0 & 0 \\
s & 0 & s & 0 & 0 \\
0 & s & s & 0 & 0
\end{array}\right], \\
& e_{15}=\left[\begin{array}{ccccc}
s & 0 & 0 & 0 & s \\
s & 0 & 0 & s & 0 \\
s & 0 & 0 & 0 & s
\end{array}\right], \quad e_{16}=\left[\begin{array}{ccccc}
s & s & 0 & 0 & 0 \\
0 & s & 0 & 0 & 0 \\
0 & 0 & s & s & s
\end{array}\right], \quad e_{17}=\left[\begin{array}{ccccc}
s & s & 0 & 0 & 0 \\
0 & s & 0 & 0 & s \\
s & s & 0 & 0 & 0
\end{array}\right], \\
& e_{18}=\left[\begin{array}{ccccc}
s & s & s & 0 & 0 \\
0 & 0 & s & 0 & 0 \\
0 & 0 & 0 & s & s
\end{array}\right], \quad e_{19}=\left[\begin{array}{ccccc}
s & s & s & s & 0 \\
0 & 0 & 0 & s & 0 \\
0 & 0 & 0 & 0 & s
\end{array}\right], \quad e_{20}=\left[\begin{array}{ccccc}
s & s & s & s & s \\
0 & 0 & 0 & 0 & s \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& e_{21}=\left[\begin{array}{ccccc}
0 & s & 0 & s & 0 \\
s & s & s & s & 0 \\
0 & s & 0 & s & 0
\end{array}\right], \quad e_{22}=\left[\begin{array}{ccccc}
0 & 0 & s & 0 & s \\
0 & s & s & s & s \\
0 & 0 & s & 0 & s
\end{array}\right], \\
& e_{23}=\left[\begin{array}{lllll}
0 & s & 0 & 0 & s \\
s & s & 0 & s & s \\
0 & s & 0 & 0 & s
\end{array}\right], \\
& e_{24}=\left[\begin{array}{lllll}
s & 0 & s & 0 & 0 \\
s & s & s & 0 & s \\
s & 0 & s & 0 & 0
\end{array}\right] \text {, } \\
& e_{25}=\left[\begin{array}{lllll}
s & 0 & 0 & s & 0 \\
s & 0 & s & s & s \\
s & 0 & 0 & s & 0
\end{array}\right] \text {, } \\
& e_{26}=\left[\begin{array}{lllll}
s & s & 0 & 0 & s \\
0 & s & 0 & s & 0 \\
s & s & 0 & 0 & s
\end{array}\right], \\
& e_{27}=\left[\begin{array}{ccccc}
s & 0 & 0 & s & s \\
s & 0 & s & 0 & 0 \\
s & 0 & 0 & s & s
\end{array}\right] \text {, } \\
& e_{28}=\left[\begin{array}{ccccc}
s & s & s & 0 & 0 \\
0 & 0 & s & 0 & s \\
s & s & s & 0 & 0
\end{array}\right] \text {, } \\
& e_{29}=\left[\begin{array}{lllll}
0 & s & s & s & 0 \\
s & 0 & 0 & s & 0 \\
0 & s & s & s & 0
\end{array}\right], \\
& e_{30}=\left[\begin{array}{lllll}
0 & 0 & s & s & s \\
0 & s & 0 & 0 & s \\
0 & 0 & s & s & s
\end{array}\right], \\
& e_{31}=\left[\begin{array}{lllll}
0 & 0 & s & 0 & 0 \\
0 & s & s & 0 & s \\
s & s & 0 & s & s
\end{array}\right], \\
& e_{32}=\left[\begin{array}{lllll}
0 & s & 0 & 0 & s \\
s & s & 0 & s & 0 \\
s & 0 & s & s & 0
\end{array}\right] \text {, } \\
& e_{33}=\left[\begin{array}{lllll}
0 & 0 & s & 0 & s \\
0 & s & s & s & 0 \\
s & s & 0 & s & 0
\end{array}\right] \text {, } \\
& e_{34}=\left[\begin{array}{lllll}
0 & 0 & s & s & 0 \\
0 & s & 0 & s & s \\
s & s & 0 & 0 & s
\end{array}\right], \\
& e_{35}=\left[\begin{array}{lllll}
0 & s & 0 & s & s \\
s & s & s & 0 & 0 \\
s & 0 & s & 0 & 0
\end{array}\right], \\
& e_{36}=\left[\begin{array}{ccccc}
0 & s & s & 0 & 0 \\
s & 0 & s & 0 & s \\
s & 0 & 0 & s & s
\end{array}\right] \text {, } \\
& e_{37}=\left[\begin{array}{ccccc}
0 & 0 & 0 & s & 0 \\
0 & 0 & s & s & s \\
s & s & s & 0 & s
\end{array}\right] \text {, } \\
& e_{38}=\left[\begin{array}{ccccc}
0 & s & 0 & 0 & 0 \\
s & s & 0 & 0 & s \\
s & 0 & s & s & s
\end{array}\right], \\
& e_{39}=\left[\begin{array}{lllll}
0 & s & s & 0 & s \\
s & 0 & s & s & 0 \\
s & 0 & 0 & s & 0
\end{array}\right], \\
& e_{40}=\left[\begin{array}{lllll}
0 & s & s & s & 0 \\
s & 0 & 0 & s & s \\
s & 0 & 0 & 0 & s
\end{array}\right], \\
& e_{41}=\left[\begin{array}{ccccc}
s & 0 & 0 & 0 & s \\
s & 0 & 0 & s & s \\
0 & s & s & s & 0
\end{array}\right] \text {, } \\
& e_{42}=\left[\begin{array}{ccccc}
s & 0 & 0 & s & 0 \\
s & 0 & s & s & 0 \\
0 & s & s & 0 & s
\end{array}\right], \\
& e_{43}=\left[\begin{array}{ccccc}
s & 0 & 0 & s & s \\
s & 0 & s & 0 & s \\
0 & s & s & 0 & 0
\end{array}\right], \\
& e_{44}=\left[\begin{array}{ccccc}
s & s & 0 & 0 & s \\
0 & s & 0 & s & s \\
0 & 0 & s & s & 0
\end{array}\right],
\end{aligned}
$$

$$
\begin{array}{lll}
e_{45}=\left[\begin{array}{lllll}
s & 0 & s & 0 & 0 \\
s & s & s & 0 & 0 \\
0 & s & 0 & s & s
\end{array}\right], & e_{46}=\left[\begin{array}{lllll}
s & s & 0 & s & 0 \\
0 & s & s & s & 0 \\
0 & 0 & s & 0 & s
\end{array}\right], & e_{47}=\left[\begin{array}{lllll}
s & s & 0 & s & s \\
0 & s & s & 0 & s \\
0 & 0 & s & 0 & 0
\end{array}\right], \\
e_{48}=\left[\begin{array}{lllll}
s & 0 & s & s & 0 \\
s & s & 0 & s & 0 \\
0 & s & 0 & 0 & s
\end{array}\right], & e_{49}=\left[\begin{array}{lllll}
s & 0 & s & s & s \\
s & s & 0 & 0 & s \\
0 & s & 0 & 0 & 0
\end{array}\right], & e_{50}=\left[\begin{array}{llll}
s & s & s & 0
\end{array}\right] \\
0 & 0 & s
\end{array} s
$$

where the values of the $15 j$-symbols corresponding to the above primitive L-pattern are: 1 for $e_{0},(1 / 2)$ from e_{1} to $e_{5},(1 / 4)$ from e_{6} to $e_{25},(1 / 8)$ from e_{26} to $e_{30},-(1 / 8)$ from e_{31} to $e_{50}, 1 / 8$ from e_{51} to e_{55}, $(1 / 16)$ from e_{56} to e_{62}, and $-(1 / 16)$ for e_{63}, respectively.

The expansion, in terms of primitive L-pattern, of any given $x \in \mathcal{E}$ of $15 j$-symbol is as follows:

$$
x=\left[\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \tag{35}\\
b_{12} & b_{23} & b_{34} & b_{45} & b_{51} \\
c_{1} & c_{2} & c_{3} & c_{4} & c_{5}
\end{array}\right]=\sum_{k=1}^{63} \alpha_{k} e_{k},
$$

where, as before, α_{k} 's are non-negative integers.
The decomposition is not unique since the primitive L-patterns again satisfy many relations of the type

$$
\sum_{i=1}^{5} e_{i}+\sum_{i=21}^{50} e_{i}=\sum_{i=6}^{20} e_{i}+\sum_{i=51}^{63} e_{i}=\left[\begin{array}{lllll}
8 & 8 & 8 & 8 & 8 \tag{36}\\
8 & 8 & 8 & 8 & 8 \\
8 & 8 & 8 & 8 & 8
\end{array}\right]
$$

The general expression of the $15 j$-symbol in terms of α_{k} is

$$
\left\{\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \tag{37}\\
b_{12} & b_{23} & b_{34} & b_{45} & b_{51} \\
c_{1} & c_{2} & c_{3} & c_{4} & c_{5}
\end{array}\right\}=\frac{1}{N_{15}} \sum_{\{\alpha\}} \frac{(-1)^{\sum_{i=31}^{50} \alpha_{i}}(-1)^{\alpha_{63}}(n+1)!}{\prod_{k=1}^{63} \alpha_{k}!}
$$

in which the following definitions apply:

$$
n=\sum_{i=1}^{63} \alpha_{i}, \quad\{\alpha\} \equiv\left\{\alpha_{1}, \ldots, \alpha_{63}\right\}
$$

and

$$
N_{15}=\sqrt{T_{a_{1} a_{2} b_{12}} T_{a_{2} a_{3} b_{23}} \ldots T_{c 5 b_{11} a_{1}}} .
$$

8. Decomposition of $\mathbf{1 8 j}$-symbol in terms of primitive \boldsymbol{L}-pattern

There are 128 (e_{0} is included) primitive L-pattern of first kind $18 j$-symbol [7] Nevertheless, for the sake of simplicity, we will only show those primitive L-patterns that give rise to different $18 j$-symbols values. ${ }^{1}$ These primitive L-patterns are the following:

$$
\begin{array}{ll}
e_{0}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], e_{1}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & s \\
0 & 0 & 0 & 0 & s & s \\
0 & 0 & 0 & 0 & 0 & s
\end{array}\right], e_{7}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & s & s \\
0 & 0 & 0 & s & 0 & s \\
0 & 0 & 0 & 0 & s & s
\end{array}\right], \\
e_{22}=\left[\begin{array}{lllllll}
0 & 0 & 0 & s & s & s \\
0 & 0 & s & 0 & 0 & s \\
0 & 0 & 0 & s & s & s
\end{array}\right], e_{42}=\left[\begin{array}{llllll}
0 & s & s & s & s & 0 \\
s & 0 & 0 & 0 & s & 0 \\
0 & s & s & s & s & 0
\end{array}\right], e_{57}=\left[\begin{array}{llllll}
0 & s & s & s & s & s \\
s & 0 & 0 & 0 & 0 & s \\
0 & s & s & s & s & s
\end{array}\right], \\
e_{63} & =\left[\begin{array}{llllll}
s & s & s & s & s & s \\
0 & 0 & 0 & 0 & 0 & 0 \\
s & s & s & s & s & s
\end{array}\right], e_{64}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & s \\
s & s & s & s & s & s
\end{array}\right], e_{76}=\left[\begin{array}{llllll}
0 & 0 & 0 & s & 0 & 0 \\
0 & 0 & s & s & 0 & s \\
s & s & s & 0 & s & s
\end{array}\right], \\
e_{116} & =\left[\begin{array}{lllllll}
0 & 0 & s & 0 & s & 0 \\
0 & s & s & s & s & s \\
s & s & 0 & s & 0 & s
\end{array}\right] . \tag{38}
\end{array}
$$

The values of the corresponding $18 j$-symbols are: 1 for $e_{0},(1 / 2)$ from e_{1} to e_{6}, (1/4) from e_{7} to e_{21}, (1/8) from e_{22} to e_{41}, (1/16) from e_{42} to $e_{56},(1 / 32)$ from e_{57} to e_{62}, and $-(1 / 32)$ for $e_{63},(\sqrt{2} / 8)$ from e_{64} to $e_{75},-(\sqrt{2} / 16)$ from e_{76} to e_{115}, $(\sqrt{2} / 32)$ from e_{116} to e_{127}, respectively.

Any given array $x($ in $\mathcal{E})$ of $18 j$-symbol can be expanded in terms of primitive L-pattern as follows:

[^1]\[

x=\left[$$
\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \tag{39}\\
b_{12} & b_{23} & b_{34} & b_{45} & b_{56} & b_{61} \\
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6}
\end{array}
$$\right]=\sum_{k=1}^{127} \alpha_{k} e_{k}
\]

where α_{k} 's are non-negative integers.
Due to the many relations of the type

$$
\sum_{i=1}^{63} e_{i}=\sum_{i=64}^{127} e_{i}=\left[\begin{array}{llllll}
16 & 16 & 16 & 16 & 16 & 16 \tag{40}\\
16 & 16 & 16 & 16 & 16 & 16 \\
16 & 16 & 16 & 16 & 16 & 16
\end{array}\right]
$$

fulfilled by the primitive L-pattern the decomposition is not unique. The general expression of the $18 j$-symbol in terms of α_{k} will be

$$
\left\{\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \tag{41}\\
b_{12} & b_{23} & b_{34} & b_{45} & b_{56} & b_{61} \\
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6}
\end{array}\right\}=\frac{1}{N_{18}} \sum_{\{\alpha\}} \frac{(-1)^{\sum_{i=1}^{127} \alpha_{i}}(|\alpha|+1)!}{\prod_{\ell=1}^{127} \alpha_{\ell}!},
$$

with the definitions:

$$
|\alpha|=\sum_{i=1}^{127} \alpha_{i}, \quad\{\alpha\} \equiv\left\{\alpha_{1}, \ldots, \alpha_{127}\right\}
$$

and

$$
N_{18}=\sqrt{T_{a_{1} a_{2} b_{12}} T_{a_{2} a_{3} b_{23}} \ldots T_{c_{6} b_{61} a_{1}}} .
$$

9. Concluding remarks

In this article we have intended to present all the basic L-patterns from which, in principle, the $3 n j$-symbols can be theoretically calculated since the L-patterns are primitive to all of them. In this manner, we wanted to explore an alternative view to simplify the problem of computing the higher order angular momentum recoupling coefficients with a different simple technique. Further exploratory work is being carried out, aimed to reduce the number of summation indexes in the expressions here presented.

Acknowledgments

The authors wish to thank the financial aid from Fondecyt (Chile) project $\mathrm{N}^{0} 1040923$ and the Milenium Nucleus for Applied Quantum Mechanics, contract $\mathrm{N}^{0} \mathrm{P} 02-004-\mathrm{F}$. One of the authors (STL) also wishes to thank Prof. Peter Macedo, Prof. Ian Pegg and Prof C. Roothaan for helpful discussions.

References

[1] E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York and London, 1959).
[2] G. Racah, Phys. Rev. 61 (1942) 186.
[3] W.T. Sharp, Some Formal Properties of the 12j Symbol (Chalk River Report TPJ-81 Ontario, 1955).
[4] J.J. Labarthe, J. Phys. A8 (1975) 1543; J. Math. Phys. 27 (1986) 2964.
[5] A.P. Jucys and A.A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics, 2nd edition, (Mintus, Vilnius, 1977).
[6] B.L. van der Waerden, Die Gruppentheoretische Methode in der Quantenmechanik (SpringerVerlag, Berlin, 1932).
[7] T. Regge, Nuovo Cim. 10 (1958) 544; Ibid. 11 (1958) 177.
[8] V. Bargmann, Rev. Mod. Phys. 34 (1962) 829.
[9] D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, 1989).
[10] L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics, Theory and Applications, Encyclopedia of Mathematics and its Applications, vol. 8 (Addison-Wesley Pub. Co., 1981).
[11] C.C.J. Roothaan and S.-T. Lai, Int. J. Quantum Chem. 63 (1997) 57.

[^0]: ${ }^{\ddagger}$ Permanent Address for reprint request.

 * Also Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.

[^1]: ${ }^{1}$ The full set of $128 L$-patterns may be obtained from the authors upon request.

